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The stability of fluid through a channel subject to a system rotation of constant
rate about the spanwise axis is considered. In contrast to previous studies, a strongly
nonlinear bifurcation approach is used to solve for a family of two-dimensional,
steady, streamwise-orientated vortex flows. A stability analysis of these flows is also
performed. All of the two-dimensional flows considered lose stability to an Eckhaus
(streamwise-independent) secondary disturbance in a steady bifurcation to another
member of the solution set. This property, given also that lower-order primary
and secondary disturbance modes can become unstable, leads to a rich structure
of bifurcation relationships between the secondary flows. With increasing Reynolds
number, the secondary flow arising from the linear critical point first loses stability
to the Eckhaus instability, and then loses stability to a fundamental spanwise mode
with small streamwise wavenumber. With a further increase in Reynolds number,
the secondary flow then also becomes unstable to a disturbance of subharmonic
spanwise and O(1) streamwise wavenumber, and finally (on the upper solution branch)
a disturbance of fundamental spanwise and O(1) streamwise wavenumber. Other
types of bifurcation for possible tertiary flows are also identified. By superimposing
the secondary disturbance onto the secondary flow, visualizations of the possible
structure of the bifurcating tertiary flows are obtained. The visualizations show low-
speed streaks in the streamwise velocity component lying between a set of staggered
vortices for superharmonic bifurcations, and between aligned vortices for subharmonic
bifurcations. Excellent qualitative and quantitative agreement is found with previous
experimental results and direct-numerical-simulation-based stability studies, and good
overall agreement with previous DNS studies was also found.

1. Introduction
Fluid flow subject to a system rotation about the spanwise axis can lose stability

to an instability mechanism which produces longitudinal rolls. Tritton (1992) and
Tritton & Davies (1985) describe this mechanism along with many examples of
relevant rotating flows. A similar mechanism is also present for flows through curved
geometry, and for flows with thermal stratification, as described by Guo & Finlay
(1991) and Bradshaw (1969) respectively. The present problem thus has relevance to
a large number of geophysical and astrophysical problems, including, for example,
barotropic instabilities and flow through ocean trenches. More details of many of
these problems may be found in Hopfinger & Linden (1990). We note that flow
through a rotating channel is also relevant to many engineering problems where the
effect of rotation on turbulent transition must be understood for the design of rotating



26 D. P. Wall and M. Nagata

Ω*

x*

y*

z*

z* = L

z* = –L

Figure 1. Configuration of the channel in dimensional coordinates.

machinery (for example compressor impellers or radial pump flows) or of instruments
that measure mass flow rates based on the Coriolis effect, as described by Raszillier &
Durst (1988) for example.

In the present study we shall consider channel flow subject to system rotation
about an axis in the spanwise direction, y∗, as shown in figure 1. The stability of
this flow is determined by two parameters: a rotation number and the Reynolds
number, R. For non-zero values of the rotation number, the presence of the Coriolis
force associated with the rotating reference frame produces a pressure gradient in
the cross-channel z∗-direction in the basic flow. The linear stability of this flow was
considered by Lezius & Johnstone (1976), who found a minimum critical Reynolds
number, Rro

c , of many orders of magnitude less than the corresponding value for plane
Poiseuille flow. Experiments performed by Alfredsson & Persson (1989) showed the
setting up of streamwise-orientated vortices when R >Rro

c and the rotation number
lies in a certain range. The experimentally observed most unstable wavenumber of
these disturbances was in agreement with that predicted by linear stability theory
close to the linear critical point. This is in contrast with non-rotating plane Poiseuille
flow, which first becomes unstable to transverse-orientated vortices according to linear
stability theory, but which may also lose stability subcritically to other flows in noisy
practical situations.

At higher values of R, as the rotation number is increased, a secondary instability
occurs which leads to a three-dimensional travelling-wave type tertiary flow. Two
instabilities of this type were identified in Alfredsson & Persson’s (1989) study: an
instability with streamwise wavelength of the order of the spanwise vortex wavelength,
usually characterized by a twisting of the vortices, and an undulating instability with
streamwise wavelength an order of magnitude larger than the spanwise wavelength.
Alfredsson & Persson (1989) also observed another secondary instability consisting
of the splitting and merging of the streamwise vortices. Finlay (1990) studied the two
travelling-wave instabilities using a direct numerical simulation (DNS) approach, as
well as performing a linear stability analysis of a numerically computed streamwise-
vortex basic state to two-dimensional spanwise-independent modes. He found the
undulating mode to exist only for low rotation rates, and to first appear for values
of R between 1.3Rro

c and 1.5Rro
c . The twisting mode was found to exist for a wide

range of rotation rates, and first appeared for values of R between 2Rro
c and 3Rro

c .
Both Finlay (1990) and Yang & Kim (1991) found the twisting mode to have the
largest growth rate, and so it would be expected to dominate in practice in flows
where both modes existed. Matsubara & Alfredsson (1998) presented experimental
results concerning the growth of the twisting-mode secondary instability, finding the
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preferred most rapidly growing disturbance to be an out-of-phase, sinuous mode.
Guo & Finlay (1991) considered an Eckhaus-type instability causing merging and
splitting of vortices by performing a linear stability analysis of a DNS-generated
two-dimensional vortex flow to two-dimensional streamwise-independent disturbance
modes. They found this instability to be important in selecting the wavenumber of the
streamwise vortices. Finlay’s (1992) DNS study explored the later stages of transition
to turbulence in these flows, while Kristoffersen & Andersson (1993) also performed
DNS of the turbulent flow.

It may be noted that similar transitions to those of the present problem, composed
of the loss of stability of the basic state to streamwise-orientated rolls, with the
resultant secondary flow then losing stability to three-dimensional disturbances which
are manifested as a modification on the streamwise structures, are also found in many
other flows. Nagata (1986) considers a similar transition in Couette flow between
two almost co-rotating cylinders, while DiPrima & Swinney (1985) identify a similar
transition in Taylor–Couette flow, and Finlay, Keller & Ferziger (1988) describe a
similar phenomenon in relation to flow through curved channels.

The aim of the present study is to find the two-dimensional secondary flow
for rotating channel flow using a global bifurcation approach, which would allow
the solution to be accurately computed away from the bifurcation point to large
amplitude. (Note that in the present context, a two-dimensional secondary flow refers
to a flow that is streamwise independent, and in particular does not refer to flows that
are invariant in the direction of the axis of rotation (i.e. here spanwise independent)
which are often referred to as two-dimensional in the context of rotating flows.)
We also set out to examine the stability of these solutions so that we may know
where they may be expected to exist, so that comparisons may be made with the
previous experimental and DNS results described above. It should be noted that
recently there has also been a developing interest in the relationship between unstable
solutions and coherent structures observed in transitional and turbulent flows, see for
example Waleffe (1998). These studies offer the possibility of deriving insight into the
transition process which cannot be easily derived from DNS studies, as the latter can
only describe stable solutions. The stability analysis also allows us to predict features
of the tertiary flow, which may also be compared with DNS and experimental results.

Accordingly, in § 2 we formulate the problem in mathematical terms, solve the
resultant equations for a basic flow and derive a corresponding set of primary
disturbance equations. In § 3 we review the stability of the basic flow, including
consideration of three-dimensional disturbances, and will use the analysis in the
following section to construct the form of the bifurcating secondary flows. In § 4 we
proceed to find a class of two-dimensional nonlinear secondary flows to which the
basic flow first loses stability with increasing R. In § 5 we consider the stability of
these secondary flows. In contrast to previous studies, we consider the stability of the
present secondary flows to three-dimensional perturbations, and are able to identify
a variety of different types of bifurcation to tertiary flows. In § 6 we compare results
with those of the previous DNS and experimental studies, before summarizing our
results in § 7.

2. Mathematical formulation
We adopt a Cartesian coordinate system whose origin is located on the centreline

of the channel. The coordinates x∗
1 = x∗, x∗

2 = y∗ and x∗
3 = z∗ represent the distances in

the streamwise, transverse and wall-normal directions respectively, where an asterisk
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denotes a dimensional variable. The following non-dimensional variables are adopted:

x =
x∗

L
, u =

u∗

V
, p =

p∗

ρV 2
, t = t∗ V

L
, (1)

where L and ρ denote half the channel width and constant density respectively, and
we select the velocity scale V = ν/L, where ν denotes the constant kinematic viscosity.
The variables ui , p and t denote the component of velocity in the xi-direction (we shall
also use u =(u, v, w) = (u1, u2, u3)), pressure and time respectively. An illustration of
the channel configuration is provided in figure 1. The flow through the channel is
subject to a system rotation at a constant rate, Ω∗, about a spanwise-orientated
axis as shown in the figure. With this choice of dimensions, restricting attention
to incompressible flows, our problem is governed by the non-dimensional Navier–
Stokes equations expressed in the rotating frame, together with the incompressibility
condition given by

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
∂2ui

∂xj∂xj

+ Ω(−u3δi,1 + u1δi,3), (2)

∂uj

∂xj

= 0, (3)

where Ω = 2(−Ω∗)L2/ν > 0 is a rotation number, and subject to the no-slip boundary
conditions at the channel walls,

u(z = ±1) = 0. (4)

A basic-state solution of the form u(x, y, z, t) =u0(z)i, p(x, y, z, t) =p0(x, z) is
sought, where we define the unit vectors i , j and k in the x-, y- and z- directions
respectively. Substituting into equations (2) and (3) for a solution of this form, we
obtain the basic flow

u0(z) = R(1 − z2), (5)

where we have introduced the Reynolds number R = L3J/2ρν2, in which −J (J > 0)
is the constant imposed pressure gradient along the channel in the positive x-direction.
The basic-state velocity is thus of an identical parabolic form to that of the non-
rotating plane Poiseuille flow case. However, in contrast to that case, for the present
basic flow there is also a pressure gradient in the wall-normal direction,

∂p0

∂z
= RΩ(1 − z2).

We shall also make use of a second rotation number, Rot = 4Ω∗ρν/JL, when
describing the linear stability results. For this case of laminar flow, the two rotation
numbers are related by Rot =Ω/R. We will also later compare results with Alfredsson
& Persson (1989) who chose a rotation number, RoAP, and Reynolds number, ReAP

based on a flux-based velocity scale,

RotAP =
2Ω∫ 1

−1

u dz

, ReAP =

∫ 1

−1

u dz.

In order to consider the stability of the basic flow, and also to permit the solution
of the secondary flow which arises upon the basic flow’s loss of stability, we seek a
solution to the governing equations (2) and (3) subject to the boundary conditions
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(4) in the form

u = u0 + û, p = p0 + p̂,

and so we are left to solve

∂ û
∂t

+ u0 · ∇û + û · ∇u0 + û · ∇û = −∇p̂ + ∇2û + Ω(−û3 i + û1k), (6)

∇ · û = 0, (7)

subject to

û(z = ±1) = 0. (8)

We decompose the velocity disturbance û according to

û = Ǔ (z, t)i + ǔ, (9)

where the mean flow modification Ǔ (z, t) is the x − y average of the component of û
in the x-direction. We may also exploit the solenoidal nature of the fluctuating part of
the disturbance velocity, ǔ, and further decompose this component into poloidal and
toroidal parts so that the incompressibility condition (7) is automatically satisfied,

ǔ = ∇ × (∇ × (φk)) + ∇ × ψ(k). (10)

Substituting expressions (9) and (10) into equation (6) for û and applying the operators
k · ∇ × (∇ × and k · ∇ × , we obtain

∂(∇2�2φ)

∂t
+ U∇2�2φx − ∂2U

∂z2
�2φx + k · ∇ × (∇ × ǔ · ∇ǔ) = ∇4�2φ − Ω�2ψy, (11)

∂(�2ψ)

∂t
+ U�2ψx − ∂U

∂z
�2φy − k · ∇ × ǔ · ∇ǔ = ∇2�2ψ + Ω�2φy, (12)

where �2 is the two-dimensional Laplacian, �2 = ∂2/∂x2 + ∂2/∂y2, and U = u0(z) +
Ǔ (z, t) is the mean flow. An equation for the mean flow modification is obtained by
taking the x–y average of the x-component of equation (6),

− ∂

∂z
(�2φ(φxz + ψy)) =

d2Ǔ

dz2
. (13)

Equations (11), (12) and (13) are solved subject to the non-slip boundary conditions

ψ(±1) = φ(±1) =
∂φ

∂z

∣∣∣∣
z=−1

=
∂φ

∂z

∣∣∣∣
z=1

= 0, (14)

Ǔ (z = ±1) = 0. (15)

3. Linear stability
In this section we briefly describe the main features of the linear stability of rotating

channel flow. In particular, in order to obtain the nonlinear secondary flows in the
following section, we accurately determine the location of bifurcation points, and must
understand the nature of the bifurcating flow. Neglecting terms involving products of
the disturbance, and also the mean flow modification, Ǔ , in equations (11) and (12),
we consider three-dimensional disturbances in the normal temporal-mode form

φ = Φ(z)ei(αx+βy)+σ t , (16)

ψ = Ψ (z)ei(αx+βy)+σ t , (17)
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where we assume the wavenumbers α and β are real and non-negative without loss
of generality. We are left to solve a sixth-order linear differential system of the form

d4Φ

dz4
− [2(α2 + β2) + iαu0]

d2Φ

dz2
+

[
iα

{
(α2 + β2)u0 +

d2u0

dz2

}
+ (α2 + β2)2

]
Φ

− iβΩΨ = σ

[
d2Φ

dz2
− (α2 + β2)Φ

]
, (18)

d2Ψ

dz2
− [(α2 + β2) + iαu0]Ψ + iβ

(
du0

dz
+ Ω

)
Φ = σΨ, (19)

subject to the boundary conditions

Ψ (z = ±1) = Φ(z = ±1) =
dΦ

dz
|(z=±1) = 0. (20)

Equations (18) and (19) subject to boundary conditions (20) together form a linear
differential eigenvalue problem for σ as a function of α, β, R and Ω . We will denote
the real and imaginary parts of the ith most unstable mode by σR

i and σ I
i respectively.

In order to obtain a numerical solution we expand the eigenfunctions Φ and Ψ in
the Chebyschev series form

Φ(z) =

∞∑
k=0

ak(1 − z2)2Tk(z), Ψ (z) =

∞∑
k=0

bk(1 − z2)Tk(z), (21)

where Tk(z) = cos (k arccos(z)) is the kth Chebyschev polynomial and the factors
(1 − z2)2 and (1 − z2) ensure that the boundary conditions (20) are automatically
satisfied. A Chebyschev collocation-point numerical technique is then applied by
truncating the sums in expressions (21) at k =N , and evaluating equations (18) and
(19) at the N + 1 (internal) collocation points

zi = cos
iπ

N + 2
, i = 1, . . . , N + 1. (22)

The resultant generalized algebraic eigenvalue problem for the coefficients ak and bk

is solved using the QZ algorithm.

3.1. Results

Marginal stability curves (σR
1 = 0) in the (R, Ω)- plane are plotted in figure 2 with

instability occurring to the right of a given curve and stability to the left. According
to our results, for a fixed value of Ω a two-dimensional mode (with α = 0) first
becomes unstable with increasing R. However, the value of the most unstable spanwise
wavenumber, β , varies with R and Ω . For example in figure 2 it may be seen that
for Ω > 100 the basic flow loses stability to the (β = 5, α = 0) mode before the
(β =2.5, α = 0) mode as R increases, whereas this situation is reversed for Ω < 100.

The linear stability results contained in the studies of Lezius & Johnstone (1976)
and Alfredsson & Persson (1989) considered only two-dimensional (α = 0) linear
disturbances, since these correspond to the observed secondary flow. In figure 3
we have plotted the minimum critical Reynolds number, Rc as a function of α,
together with the corresponding values of β, Rot, Ω and σ I

1 . It may be observed
that the two-dimensional mode with α =0 indeed yields the smallest Rc. Lezius &
Johnstone (1976) considered a sequence of discrete values of Rot and, in terms of the
present dimensions, found the minimum critical Reynolds number to be Rc = 66.40 at
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Figure 2. Marginal stability curves corresponding to the most unstable eigenvalue for the
values of α and β indicated.
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Figure 4. Growth rate of the most unstable mode against disturbance wavenumbers α and
β at R = 100 for (a) Rot = 0.8, (b) Rot = 0.6, (c) Rot = 0.35, (d) Rot = 0.1. Only positive
growth rates are plotted.

Rot = 1/3 with βc = 2.45. Alfredsson & Persson (1989), who also considered a set of
discrete values of Rot, found the minimum critical Reynolds number to be Rc = 66.45
also at Rot = 1/3. With the present numerical method, upon setting Rot = 1/3, we
obtain a critical Reynolds number Rc = 66.450 with the corresponding βc =2.455.
However, allowing Rot to vary, we obtain the minimum critical Reynolds number
to be Rc = 66.448, βc = 2.459 and Rotc = 0.3366. For convenience however, most
of our results in § 4 are for the near critical wavenumber β = 2.5, together with
β = 1.25, β = 3.75 and β = 5 to facilitate an easier understanding of the one-two and
one-three modal interactions described in those sections. It may also be observed
from figure 3 that the corresponding critical spanwise wavenumber and both critical
rotation numbers increase with α, while the critical eigenvalue is only real when α =0.

In figure 4 we have plotted values of σ 1
R > 0 in the (α, β)- plane when R = 100 for

four values of Rot. At this value of R the flow is stable to all infinitesimal disturbances
when Rot = 0, and so clearly increases in Rot first destabilize the flow, with a region
of unstable wavenumbers increasing in size, before further increases in Rot shrink this
region and stabilize the flow. It may be observed that the largest growth rates occur
when α = 0, and so these two-dimensional modes may be expected to dominate.

For R > 5772 the flow is also unstable to a two-dimensional spanwise-independent
shear mode as shown by figure 5. It may easily be seen that equations (18) and (19)
are independent of Ω when β =0, and so this mode is the well-known Tollmien–
Schlichting mode that arises from consideration of the Orr–Sommerfeld equations
for plane Poiseuille flow, as discussed by Drazin & Reid (1981) for example. As R

increases further, the region of instability of the basic flow to this shear mode spreads
to include non-zero β . However, for the values of Rot and R we investigated, the
two regions of instability never intersect. Moreover, we note that the growth rate
associated with the shear mode is several orders of magnitude smaller than that of
the rotation modes, thus we would expect the latter to dominate in practice in a
situation where both existed.
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Figure 5. Plot of the growth rate of the most unstable mode for R = 104, Rot = 0.1. Only
positive growth rates are plotted.

We also note the remark of Alfredsson & Persson (1989) that, in contrast to non-
rotating Poiseuille flow, for the present problem lower-order eigenvalues may also
become unstable. This enriches the range of possible bifurcating flows. For instance
when Ω = 22.1325 and β =2.5 the next two eigenvalues, which are also real, become
unstable at R =774 and R = 6811 respectively.

In summary, we have found the basic flow to be most unstable to two-dimensional
disturbances with α =0, with the corresponding eigenvalues real. The critical Reynolds
number allowing Rot, α and β to vary is found to be Rc = 66.448.

4. Two-dimensional steady nonlinear secondary flows
4.1. Numerical formulation

The previous section describes how the basic flow is most unstable to two-dimensional
disturbances. We seek to calculate the nonlinear secondary flows which bifurcate
from the basic flow upon loss of stability to disturbances of this type. Accordingly
we shall seek to calculate two-dimensional solutions to equations (11) and (12) with
the nonlinear terms retained. (The nonlinear terms not explicitly expressed in these
equations may be found in Wall & Nagata (2000).) Since the corresponding marginal
eigenvalues are real, we anticipate a steady solution, and accordingly seek solutions
in the form

φ(y, z) =

∞∑
l=0

∞∑
n=−∞

al,ne
inβyTl(z)(1 − z2)2, (23)

ψ(y, z) =

∞∑
l=0

∞∑
n=−∞

bl,ne
inβyTl(z)(1 − z2), (24)

where the amplitude coefficients al,n and bl,n are complex. Equations for the case
n = 0 are replaced by the equation for the mean flow modification (13), where this
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modification is decomposed according to

Ǔ (z) =

∞∑
k=0

CkTk(z)(1 − z2), (25)

in which the coefficients Ck are real. Once again the (1 − z2)2 and (1 − z2) factors
have been introduced to ensure that the boundary conditions (14) are automatically
satisfied. Since φ and ψ are required to be real, we have that φ = φ and ψ = ψ , where
Z denotes the complex conjugate of Z, so we have

∞∑
l=0

−∞∑
n=∞

al,−ne
inβyTl(z)(1 − z2)2 =

∞∑
l=0

∞∑
n=−∞

al,ne
inβyTl(z)(1 − z2)2,

with a similar relationship holding for ψ . Thus we may truncate the sums in the
expressions (23) and (24) to positive values of n, and calculate the coefficients al,n for
negative values of n a posteriori using the relationships aR

l,−n = aR
l,n, aI

l,−n = −aI
l,n, with

corresponding expressions for bl,n. The Fourier operator

β

2π

∫ 2π/β

0

dyeiγβy

is then applied to equations (11) and (12).
In order to obtain numerical solutions we truncate the series in expressions (23)

and (24) at l = L and n= N and allow γ to take integer values from 1 to N . We
also truncate the series in expression (25) at k = K , where in practice we always use
K =L, and apply a Chebyschev collocation-point numerical technique by evaluating
the remaining equations at the L+1 internal collocation points given by equation (22).
This leads to (L + 1)(4N + 1) real nonlinear equations of the form

Fn = Dn mXm + Hn m kXmXk = 0, n = 1, . . . , (L + 1)(4N + 1), (26)

where the summation convention has been used and Xm, m = 1, . . . , (L + 1)(4N + 1)
represents the solution vector containing the 4N(L + 1) unknown real and imaginary
parts of the coefficients al,n and bl,n, and the L + 1 unknown real coefficients Ck ,
k = 0, . . . L. The number of coefficients can be further reduced by approximately a
half if symmetries are applied. Specifically, it is sufficient to consider solutions in the
following set of modes:

Φ Ψ

cos(n′′βy)fl′′(z) cos(n′βy)gl′′(z)

cos(n′′βy)fl′(z) cos(n′βy)gl′(z)

sin(n′βy)fl′′(z) sin(n′′βy)gl′′(z)

sin(n′βy)fl′(z) sin(n′′βy)gl′(z),

where a double prime attached to l or n denotes an even integer, while a single
prime denotes an odd integer, with fl(z) = Tl(z)(1 − z2)2 and gl(z) = Tl(z)(1 − z2). We
solve the nonlinear algebraic system of equations (26) using the Newton–Raphson
iteration method. Most of our results were obtained with the truncation levels L = 15
and N = 7, at which level the solution appears to be adequately converged, with
the relative error in the leading-order coefficients O(10−3) by comparison with a
numerical solution at a much higher truncation level. Generally speaking, we found
that a higher truncation level was required to maintain the same level of accuracy with
increasing R, while some problems were encountered in following a particular solution
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L N aR
0,1 L2(φ)

11 5 0.144500793 × 101 0.269256322 × 101

11 6 0.143220807 × 101 0.266463549 × 101

11 7 0.143316270 × 101 0.266676600 × 101

11 9 0.143310594 × 101 0.266664783 × 101

15 7 0.143128335 × 101 0.267176575 × 101

15 8 0.143121899 × 101 0.267163155 × 101

15 9 0.143122018 × 101 0.267163492 × 101

17 8 0.143045099 × 101 0.267085170 × 101

19 9 0.143052520 × 101 0.267102985 × 101

27 9 0.143055870 × 101 0.267103346 × 101

29 11 0.143055776 × 101 0.267103544 × 101

Table 1. Convergence of the real part of the leading-order φ coefficient, aR
0,1, and the L2

norm of the φ amplitude coefficients al,n, L2(φ), for the truncation levels indicated for the
upper-branch solution when R = 3000, β = 5 and Ω = 22.1325.

branch in regions of phase space in which two branches for the same parameters
existed in close proximity, for example the AB and DE β = 1.25 branches of figure 6.
A higher truncation level together with smaller steps along the solution branch
overcame this problem. For reference, the turning point on the β =5 branch shown in
figure 6 is found to be 4130.6, 4126.7 and 4127.9 for truncation levels (L = 15, N = 7),
(L = 17, N = 9) and (L = 23, N = 10) respectively. Table 1 displays convergence of the
secondary flow at various truncation levels for another higher Reynolds number flow.

4.2. Results

In figure 6 we have plotted values of the L2 norm of the amplitude coefficients al,n

in parameter space against R for various spanwise wavenumbers when Ω = 22.1325.
The marginal stability points derived by the linear stability analysis of the preceding
section correspond to the bifurcation points of the nonlinear solutions from the basic
flow, where L2(a0,1, . . . , aL,N ) = 0. If we consider the solution for β = 2.5, it may be
observed that the solution bifurcates from the basic flow in a supercritical bifurcation,
with the amplitude of the bifurcating solution increasing with increasing R until a
turning point is reached at R ≈ 374 (equivalent to ReAP = 408, RotAP = 0.109). The
amplitude then decreases as R reduces until, at R ≈ 153, the solution appears to
merge with that of the upper branch of the β = 5 solution shown in figure 6. In fact,
on applying linear secondary stability analysis as described in § 5 to the β = 5 solution,
it is clear that at this point a single real eigenvalue changes sign, which corresponds
to a steady, subharmonic bifurcation in agreement with the nonlinear results. We
illustrate the transition from the β = 5 solution branch to the β = 2.5 solution branch
via this bifurcation in figure 7 by displaying a visualization of contours of φ. As
may be seen in the figure, such a bifurcation, in which the spanwise wavelength
of the flow doubles, corresponds to a merging of some of the vortical structures
present in the β = 5 case. In figure 7(a) we show contours of φ on the β = 5 branch
slightly below the bifurcation point. Note that in general, as shown in this figure, the
fluctuating variables tend to be concentrated in the z > 0 half of the channel. This
is in agreement with the basic inviscid local instability criterion described by Pedley
(1969) or Bradshaw (1969), which yields instability when

2Ω∗(dU/dz∗ − 2Ω∗) > 0,
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Figure 6. Amplitude of the bifurcating secondary flows against R when Ω = 22.1325 and the
values of β indicated. Enhanced detail of full plot (a) is shown in plot (b) and in the insets.

where U is the mean velocity (this is equivalent to the sign of the Bradshaw number,
the product of relative spanwise and absolute spanwise vorticity, being positive).
For the present case, for which Ω∗ < 0, instability may therefore occur in the z∗ > 0
half of the channel according to this criterion. At slightly beyond the bifurcation
point, on the β = 2.5 branch as shown in figure 7(b), it can be seen that the vortices
marked A in the β = 5 pre-bifurcation solution figure 7(a) are strengthening in the
post-bifurcation solution, whereas the vortices labelled B are disappearing, with those
marked C coalescing to form a streamwise-invariant structure of horseshoe cross-
section in figure 7(c). A larger distance away from the bifurcation point on the
β = 2.5 branch, as shown in figure 7(d), the flow assumes a more familiar streamwise-
vortex appearance similar to that of the pre-bifurcation solution shown in figure 7(a).
However, in comparison with the latter solution, the centres of the vortices have
shifted to be closer to the channel centreline while the wavelength of the flow has of
course doubled.
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Figure 7. Contours of φ when Ω = 22.1325 at (a) R = 150 on the β = 5 solution branch,
which bifurcates at R ≈ 152.5 to a β = 2.5 branch shown at (b) R =156, (c) R =160 and (d)
R = 374. All plots have been scaled to show two spanwise wavelengths on the β = 2.5 scale,
and were obtained with L = 15 and N = 7.

In contrast to the β = 2.5 solution bifurcating from the basic flow, the β = 5 branch
shown in figure 6, after similarly reaching a turning point at R ≈ 4128 (equivalent
to ReAP = 3295, RotAP = 0.0134), then, however, reconnects with the basic flow at
R ≈ 589. Linear stability analysis of the basic flow, as described in § 3, demonstrates
that this point corresponds to a marginal stability point arising from the change in
sign of the second most unstable eigenvalue, which is also real.

If we consider now the solution for β =1.25, we see a behaviour distinct from the
previous cases. The secondary flow bifurcates in a supercritical bifurcation with the
amplitude of the secondary flow first increasing with R along an upper bifurcation
branch until a turning point is reached at R ≈ 177. Amplitude then decreases as the
solution follows a lower branch. However, in this case, a further two turning points
in R are reached before the solution branch finally terminates on the β = 2.5 lower
branch at point C, near to this branch’s own bifurcation from the β =5 upper branch
at point F in figure 6. The stability analysis described in § 5 applied to the β = 2.5
solution shows that the bifurcation at point C corresponds to a steady subharmonic
bifurcation when a real eigenvalue, the third most unstable, changes sign.

In fact secondary stability analyses demonstrate that many solution branches may
exist for lower values of β owing to the possibility of subharmonic bifurcation from
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flows with larger β . Indeed, given that every secondary flow appears to lose stability
to spanwise instabilities of any wavenumber, as will be described in § 5, we would
expect an uncountable number of solution branches corresponding to small spanwise
wavenumbers. For reference, we have included another solution for β = 1.25 in figure
6. In this case the solution bifurcates from the β = 2.5 upper branch at R ≈ 89, point A
in the figure, with the bifurcating branch reaching a turning point at R ≈ 89.3 before
the amplitude of the bifurcating solution continues to decrease to a termination point
B on the β =3.75 upper branch. Secondary stability analysis confirms that this point
corresponds to a one-three mode steady subharmonic bifurcation from the β = 3.75
to β = 1.25 branch. We have visualized the transition from the β = 2.5 solution at
point A to the β = 3.75 solution at point B via this β = 1.25 connecting branch by
plotting contours of ψ in figure 8. All the spanwise plots have been scaled to contain
one wavelength on the β =1.25 scale. Thus in figure 8(a), which plots the β = 2.5
branch at the bifurcation point A marked on figure 6, two wavelengths of the solution
are shown and four vortices are visible in the upper half of the channel. As we move
onto the β = 1.25 branch, figure 8(b), four vortex structures are initially retained, but
the doubling of the wavelength is clearly visible; none of the vortices are identical. As
we continue to progress down the β = 1.25 branch, as shown in figure 8(c, d), the two
vortices at either spanwise edge of the plotted domain gather strength at the expense
of the two inner vortices, while in figure 8(d) the beginning of an additional pair
of vortices is just apparent in the upper corners of the plotted domain. These have
strengthened in figure 8(e) to form a total of six vortices across the spanwise width
of the domain shown. Finally, in figure 8(f ), the solution on the β = 3.75 branch
close to the bifurcation point shows six vortices of equal strength, comprising three
spanwise wavelengths of this solution.

In figure 9 we plot profiles of the mean flow at various points on the upper and
lower branches of the β = 5 solution shown in figure 6. It may be seen that as we
move away from the bifurcation point the flow loses the parabolic profile of the
basic flow, and develops a flat profile which is in general slightly skewed into the
half of the channel that is unstable according to the inviscid stability criterion. If, as
is undertaken in figure 10, the corresponding absolute vorticity profiles (i.e. profiles
of the vorticity of the mean flow in an inertial reference frame) are considered, we
observe that this quantity approaches zero across a wide region in the centre of the
channel as R increases. In such a region the flow is neutrally stable according to
inviscid stability theory. We note that this phenomenon has also been found in the
numerical simulations of turbulent flows by Kristoffersen & Andersson (1993), and
also in the experiments of Johnston, Halleen & Lezius (1972). It may be noted that,
by contrast, the flow near the lower-branch bifurcation point from the basic flow at
R =595 exhibits an absolute vorticity profile that is nearly linear, in agreement with
expectations.

5. Stability of the secondary flow
It is of interest to determine the linear stability of the nonlinear secondary flows

in order to give information on which of these flows may be observed in practice,
and also to give information about the bifurcating tertiary flow. In the present
study we will consider the stability of the secondary flow to three-dimensional
secondary disturbances, which includes the special cases of streamwise-independent
and spanwise-independent disturbances considered in the studies of Guo & Finlay
(1991) and Finlay (1990) respectively. Accordingly, we consider a three-dimensional
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Figure 8. Contours of ψ when Ω = 22.1325, on (a) the β = 2.5 solution branch at the point
R = 88.95 of bifurcation to the β =1.25 branch (b) and (c) R = 89, (d) R = 86, (e) R = 84.45
which then terminates on (f ), the point of bifurcation from the β = 3.75 solution at R = 84.3.
Truncation levels L = 15, N =7 (a, f ) and L = 23, N = 8 (b–e) were used.

disturbance, u = ũ(x, y, z, t) and p = p̃(x, y, z, t), and the total flow u =U0 i + û + ũ,

p = p0 + p̂ + p̃, must satisfy the governing equations (2)–(3) subject to boundary
conditions (4).

Since the disturbance is solenoidal, we may decompose it according to
ũ = ∇ × (∇ × φ̃k)+∇ × ψ̃k, and apply the operators k · ∇ × and k · ∇ × (∇ × as before.
Since we are here concerned with the linear stability of the secondary flow, products
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of the secondary disturbance are discarded, and Floquet theory encourages us to seek
solutions in the form

φ̃ =

∞∑
l=0

∞∑
n=−∞

ãl,ne
inβy+idx+iby+σ tTl(z)(1 − z2)2, (28)

ψ̃ =

∞∑
l=0

∞∑
n=−∞

b̃l,ne
inβy+idx+iby+σ tTl(z)(1 − z2), (29)
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L N σR
1

15 7 −0.191133542767 × 10−1

19 7 −0.191127549476 × 10−1

23 7 −0.191127398838 × 10−1

27 7 −0.191127403631 × 10−1

15 8 −0.191133541371 × 10−1

23 8 −0.191126932456 × 10−1

27 9 −0.191127393360 × 10−1

Table 2. Convergence of σR
1 against truncation level for the upper-branch flow with R =80,

Ω = 22.1325 and β = 2.5 subject to a disturbance with d = 0 and b = 0.3.

where d and b are real Floquet parameters which we may assume are non-negative
without loss of generality, and σ is the disturbance growth rate. For given values
of R, β, Ω , d and b, adopting the same eigenvalue labelling convention as in § 3, if
σR

1 > 0 the flow is unstable, while if σR
1 < 0 the flow is stable. If σR

1 = 0 the flow is
neutrally stable, and these points offer a possible bifurcation point for the tertiary
flow. We note that φ̃ and ψ̃ are periodic in the Floquet parameter b with period
β , and so it is therefore necessary and sufficient to examine the semi-infinite strip
0 � b <β in Floquet parameter space at each point on the secondary-flow bifurcation
branch in order to determine the stability of the secondary flow at that point. Results
are also symmetric about b =β/2, as discussed by Nagata & Busse (1983), although
some of our results were calculated in the full strip 0 � b <β in order to check the
rectitude of the stability code. Equations for the unknown coefficients ãl,n and b̃l,n,
and the eigenvalue σ are derived by applying the operator

αβ

4π2
e−σ t

∫ 2π/α

0

dxe−idx

∫ 2π/β

0

dye−i{γβy+by}.

5.1. Numerical method

Upon varying γ over the values −N, −N + 1, . . . , N and evaluating the resultant
equations at the L + 1 internal collocation points given by equation (22), we
obtain a system of 2(L + 1)(2N + 1) equations which form a generalized algebraic
eigenvalue problem of the form Ax = σBx, for the eigenvalues σ with eigenvector
(ã0,−N, ã0,−N+1, . . . , ã0,N , ã1,−N, . . . , ãL,N , b̃0,−N, . . . , b̃L,N ). We solve this eigenvalue
problem using the QZ algorithm, and for most of our results for the most unstable
eigenvalue we used L =15 and N = 7, but higher truncation levels are required for
lower-order eigenvalues. Table 2 shows convergence of the most unstable eigenvalue
against truncation level for a test problem.

5.2. Results

In order to fully consider the stability of a given streamwise-independent flow, we
consider stability to disturbances of all Floquet parameter values within the semi-
infinite strip 0 � b <β , 0 � d due to the periodicity of b described earlier. We first
consider the stability of the β = 2.5 secondary flow branch shown in figure 6. We
consider the stability of this flow at a sequence of points along the upper and lower
solution branches. The results are presented in figure 11, where we plot contours
of the real part of the most unstable eigenvalue in Floquet parameter space. It
may be seen in figure 11(a) that when R = 70 the secondary flow is stable to all
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Figure 11. Contours of the real part of the most unstable eigenvalue in Floquet parameter
space for the secondary flow bifurcating directly from the basic state with β = 2.5, Ω = 22.1325
on the upper branch at (a) R = 70, (b) R = 130, (c) R = 220, (d) R = 280, (e) R = 340 and
(f ) R = 374.1, and on the lower branch at (g) R = 310 and (h) R =160 for truncation level
L =15, N =7. In each figure the cross (+) denotes the location of the mode with largest
growth rate.
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appearance of the three-dimensional subharmonic secondary stability mode (disjoint from
the region associated with the Eckhaus mode) (−�−). The secondary stability results were
obtained at truncation level L =15, N =7.

disturbances, and hence may be expected to be realized both in numerical simulations
as well as experimentally. In fact our calculations show that this flow is stable to
all disturbances for R � 80, at which point the flow loses stability to a disturbance
with d =0 and vanishing b, with the corresponding eigenvalue real. We will call
secondary disturbance modes with d = 0 Eckhaus modes, and discuss the stability of
these modes, Eckhaus instability, later in this section.

As R increases, as may be seen with reference to figure 11(b), the flow rapidly
becomes unstable to all values of b ∈ (0, β) for zero d , with the subharmonic
secondary-disturbance modes b = β/2 possessing the largest growth rates. The region
of unstable Floquet parameter values also expands from the d = 0 axis to include
disturbances with small d and non-zero b.

When R reaches 220 on the upper branch, two additional unstable modes appear.
First, the flow becomes unstable to a mode with zero b and small d which is
initially a disjoint region in Floquet space (as may be seen in figure 15 for different
parameters), but then joins with the Eckhaus-unstable region. The corresponding
wave speed is non-zero. We have plotted a secondary marginal stability curve for the
mode d = 0.1, b =0 in R, β space in figure 12; this mode first appears for R ≈ 120,
β ≈ 3.32.

A second instability mode then also appears, which may be seen in figure 11(c)
as the disjoint region of instability centred around d ≈ 0.75 and b = 1.25. As R

increases it may be seen with reference to figure 11(d) that such a three-dimensional
spanwise-subharmonic disturbance (d �= 0, b = β/2) then becomes the disturbance of
largest growth rate. This mode consists of a single complex eigenvalue, and so would
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be expected to produce a travelling-wave tertiary flow. With reference to figure 11(d ,
e), it can be seen that this second region of unstable Floquet parameters eventually
extends to include all spanwise Floquet parameters. It can also be seen that upon
reaching the turning point, figure 11(f ), the mode with largest growth rate has become
one with b =0, d > 0 (recall that σ is periodic in b with period β).

From the turning point of the nonlinear branch, as we progress down the lower
branch it may be seen in figure 11(g, h), that the region of instability then collapses
to a single region which is bounded by a finite value of d . The flow remains unstable
everywhere on the lower branch. The second most unstable mode first becomes
unstable at the turning point of the nonlinear solution branch (R = 374.1).

Eckhaus instability describes the stability of a supercritically bifurcating two-
dimensional nonlinear solution to two-dimensional disturbances, where these distur-
bances are functions of the cross-channel ordinate, and periodic functions of the other
space variable on which the bifurcating nonlinear flows depend. In the present case,
these two-dimensional disturbances are the Eckhaus modes defined earlier in this
section, and are thus periodic in the spanwise direction, and streamwise independent.
Eckhaus (1965) used an amplitude expansion method to derive an approximation for
the band of wavenumbers stable to Eckhaus disturbance modes in the vicinity of the
linear critical point,

βm
L (R) − βc√

3
< β − βc <

βm
R (R) − βc√

3
, (30)

where βm
L (R) and βm

R (R) denote the left- and right-hand branches of the linear
marginal stability curve respectively. In figure 12 we have shown where the nonlinear
flow bifurcating from the critical point is stable in the (R,β)- plane. The flow bifurcates
supercritically from the linear marginal curve in a region about the critical point,
and the stability of the resultant nonlinear secondary flow is then determined by
its stability to Eckhaus-type modes (d = 0) since, in all our results, the flow always
loses stability to disturbances of this kind first with increasing R. Tracing a marginal
stability curve for these disturbances for this flow it appears to produce a closed
region of stable flows. We note that the most unstable Eckhaus mode, whose real
part’s change in sign forms the Eckhaus boundary plotted in the figure, always has
a zero imaginary part. As may be seen with reference to the contours plotted in the
figure, most of the left-hand boundary is determined by b = 0, while the upper parts
of the left- and right-hand Eckhaus boundaries are determined by the subharmonic
b =β/2 mode. The lower part of the right-hand Eckhaus boundary is then determined
by values of b decreasing towards 0 as β decreases. We have also included a plot of
Eckhaus’s (1965) approximation (30); clearly this approximation does not correctly
describe the Eckhaus stability characteristics of the present problem, as Guo & Finlay
(1991) also found for flow through a curved channel. We note also that it may be seen
from the diagram that the solutions bifurcating from the basic state when Ω = 22.1325
for β = 1.25 and 5 shown plotted in figure 6 are, in particular, unstable from point of
bifurcation from the basic state and never become stable with increasing R. However,
as noted in the Introduction, these flows may nonetheless be important in explaining
features of coherent structures in turbulent flow.

As well as providing information about the stability of the secondary flows,
secondary stability analysis also allows bifurcation points for the tertiary flow to
be identified, and yields some information regarding the nature of the bifurcating
solution. In our analyses we have been able to identify four distinct types of
bifurcation: (i) d =0, b �= 0, a single real eigenvalue crosses the real axis with
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σI =0, (ii) b = 0, d �= 0, a single eigenvalue crosses the real axis with σI �= 0, (iii)
d �= 0, b �= 0, a single eigenvalue crosses the real axis with σI �= 0 and (iv) b �= 0, a
complex-conjugate pair of eigenvalues crosses the real axis. A bifurcation of type (i)
will produce a steady streamwise-independent bifurcating flow of the same form as
the secondary flows of the present study. This type of bifurcation corresponds to the
bifurcation of the upper branch of the β = 5 solution to the lower branch of the β = 2.5
solution at point F in figure 6, as well as the bifurcation from the β =2.5 solution at
point C to the β = 1.25 solution bifurcating from the basic flow, and also occurs at
both ends A and B of the other β =1.25 solution shown. Bifurcations of type (ii) and
(iii), which will produce a travelling-wave solution, offer a possible route for obtaining
the travelling-wave tertiary flows found in the DNS and experimental studies, which
we discuss further in § 6. Both of these bifurcations lead to a streamwise-dependent
tertiary flow, while for case (iii) the spanwise wavelength of the flow is also changed.

We can gain a further insight into the tertiary flows originating from some of the
bifurcation types described above by constructing an approximate visualization by
superimposing the secondary disturbance on the secondary flow. Such a visualization
is carried out in figure 13 (a), where we show contours of the fluctuating component
of velocity in the streamwise direction, u, and the streamwise component of the
vorticity, ωx = [∇ × u]x for a bifurcation of type (ii) for parameters expected to lead
to a flow of Finlay’s (1990) WVF1 type. It may be seen that the flow is characterized
a sequence of staggered vortices which elongate in the streamwise direction and lie
either side of low-speed streaks in the streamwise velocity component.

In figure 13(b) we have also visualized a bifurcation of the same type which
is expected to lead to a flow of the undulating wavy vortex type also discussed by
Finlay (1990) (WVF2) and Alfredsson & Persson (1989). This undulating flow is quali-
tatively similar to the twisting one shown in figure 13, with again low-speed streaks
in the streamwise velocity component lying between a set of staggered vortices in
the x, z cross-section. In fact Finlay (1990) states that the two flows satisfy the same
glide-and-reflect symmetries, and he distinguishes them by the differing amplitudes
of motion and rocking of the vortices. For reference, plots depicting the structure
of the tertiary flow in the vicinity of a subharmonic bifurcation point are shown in
13(c). The visualization has again been constructed by adding the eigensolution to
the secondary flow. Clearly the structure is once more one consisting of a low-speed
streamwise-orientated streak in the streamwise velocity component flanked either
side by a set of vortices. However, in contrast to the superharmonic case, these
vortices are aligned rather than staggered, and the profile of u is varicose rather
than sinuous. A full nonlinear three-dimensional solution obtained by the bifurcation
approach is necessary to provide a quantitative comparison between these flows and
to investigate the form of the tertiary flows away from the vicinity of the bifurcation
from the secondary flow. Visualizations of bifurcating three-dimensional tertiary flows
for other parameter values we have considered exhibit the same qualitative patterns
as those shown in figure 13.

6. Comparison with previous studies
Our findings appear to be in good qualitative agreement with those of previous

experimental and DNS- based studies. In agreement with Alfredsson & Persson (1989),
we have found that the basic flow first loses stability to two-dimensional, steady,
streamwise-independent roll cells. Furthermore we have found that this streamwise-
independent secondary flow is stable within a closed Eckhaus boundary, as was also
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Figure 13. Left: contours of u, and right: contours of ωx at z = 0.85 for (a) the solution
approached by a tertiary flow with α =1.5, β = 2.5 and Ω = 22.1325 in the limit as R− > 268+

(ReAP = 294,RotAP = 0.151); (b) an estimate of the tertiary flow structure when α = 0.3,
β =3.0 and Ω = 27.5 for R =532 (ReAP = 550, RotAP = 0.1); and (c) the solution approached
by a tertiary flow with α = 0.77, β = 1.25 and Ω = 22.1325 in the limit as R− > 192+

(ReAP = 216,RotAP = 0.205). In all cases we have scaled the real part of the leading-order
non-zero φ̃ coefficient of the eigensolution ( ãR

0,1 (a, b), ãR
0,0 (c)) to be 0.1 × the leading order φ

coefficient of the two-dimensional nonlinear solution (aR
0,1), with results obtained for truncation

levels L = 15, N = 7 (b, c) and L =19, N = 7 (a).

found by Guo & Finlay (1991), who considered the linear stability of a vortex flow
generated by using a DNS code. We can also see this behaviour in the experimental
study of Alfredsson & Persson (1989), for example their figure 5 shows the secondary
flow losing stability to a steady streamwise-independent instability. We note that this
property of the present secondary flows is in contrast to Taylor–Couette flows, whose
corresponding Eckhaus boundary is open, see for example Nagata (1986).
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Figure 14. Contours of u for the solution approached by a tertiary flow with α = 1.5, β = 2.5
and Ω =22.1325 in the limit as R− > 268+. Results obtained for truncation level L = 19, N = 7.
The figure has been scaled to show two wavelengths in the spanwise direction.

Moving beyond the Eckhaus boundary for fixed β , Ω as for the plots of figure 11,
the instability mode with zero b and small d may correspond to Finlay’s (1990)
WVF2 or undulating flow. In particular, we find this eigenmode to be distinct from
that which then appears at larger R with b = 0, d = O(1). The latter mode appears to
be consistent with Finlay’s (1990) WVF1 and the twisting vortex flows described by
Yang & Kim (1991) and Alfredsson & Persson (1989). In figure 14 we have plotted
contours of u for the flow of figure 13 in the spanwise–wall-normal plane; although
for different parameters, it bears a marked similarity to the plot of twisting vortices
in Yang & Kim’s (1991) figure 8. We also note that the WVF1 mode has appeared
after WVF2, which Finlay (1990) found to be always the case when both are present.
Of course, to confirm the relationship between these flows it will be necessary to
compute the three-dimensional bifurcating flows and also analyse their stability.

We proceed now to make more precise quantitative comparisons with the results
of some of these studies. Unless otherwise stated, where quantitative comparisons are
made solutions of the present study lying on the upper branch of the flow bifurcating
directly from the basic state will be used to compare with the previous work.

We sought to compare the results of the present study with the experimental results
of Alfredsson & Persson (1989), considering first the results of the experiments shown
in their figure 5. It may be noted that, owing to our differing choice of dimensions,
values of R corresponding to the parameters used by Alfredsson & Persson (1989) for
the streamwise-vortex secondary flow cannot be chosen a priori as they can for laminar
flow, since flux is modified by the mean flow modification, Ǔ . However, integrating
Ǔ across the channel allows us to select R correctly. Accordingly, we examined
the flows with (a) R = 133.5, Ω = 7.515 and β = 2.35, (b) R =138.2, Ω = 10.855 and
β = 2.2 and (c) R = 143.3, Ω =14.195 and β = 2.65 which correspond to Alfredsson &
Persson’s (1989) figures 5(a), 5(b) and 5(c) respectively. Performing a stability analysis
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Figure 15. Contours of the real part of the most unstable eigenvalue in Floquet parameter
space for the secondary flow corresponding to that in the experimental results of Alfredsson &
Persson’s (1989) figure 5(c), with β = 2.65, Ω = 14.195 and R =143.3 at truncation level L = 15,
N = 7. The cross (+) denotes the location of the mode with largest growth rate.

of these three flows we find (a) to be stable to all disturbances, while for flows (b)
and (c) there is a region of instability in the neighbourhood of the Eckhaus modes
(d = 0) in Floquet parameter space. We have plotted contours of the real part of
the most unstable eigenvalue for case (c) in figure 15. In both cases (b) and (c),
the subharmonic Eckhaus mode d = 0, b = β/2 has the largest growth rate, while the
corresponding imaginary part of the eigenvalue is zero. We therefore would expect a
steady harmonic bifurcation to another streamwise-independent flow with double the
spanwise wavelength. Our stability results would thus seem to appear to be in good
agreement with the experimental findings included in Alfredsson & Persson’s (1989)
figure 5; the instability which Alfredsson & Persson (1989) describe may be observed
by following a bright band from left to right in their figure and observing a splitting
of this band into two separate bright bands. However, this instability only appears
to be present in their figures 5(b) and 5(c), which is therefore in excellent agreement
with the present stability results.

We further made a comparison with Alfredsson & Persson’s (1989) figure 6(d), for
which an equivalent flow in terms of the present dimensions is given by R =90.36,
Ω = 30.8 and β = 3.35. We performed a secondary stability analysis of this flow and
found it to be stable to for all values of d and b. This would again appear to be in
full agreement with the experimental results since, in contrast to their figures 5(b) and
5(c), there does not appear to be any evidence of the spanwise bright-band splitting
instability described above.

Finally, a comparison was made with the flow captured in figure 7(b) of Alfredsson
& Persson’s (1989) study, which depicts a streamwise-orientated flow losing stability to
a three-dimensional travelling-wave disturbance which they describe as consisting of
twisted roll cells. From the photograph we have estimated the spanwise wavenumber
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Figure 16. Contours of the real part of the most unstable eigenvalue in Floquet parameter
space for the secondary flow corresponding to that in the experimental results of Alfredsson &
Persson (1989) figure 7(b), with β = 3.75, Ω = 24.78 and R = 627.4 at truncation level L = 15,
N =7. The cross (+) denotes the location of the mode with largest growth rate.

to be β =3.75 in terms of the present dimensions, while selecting Ω = 24.75 and
R = 627.4 allows the other parameters to agree with those used by Alfredsson &
Persson (1989). A plot of contours of the real part of the most unstable eigenvalue
in Floquet parameter space is shown in figure 16. Clearly the flow is unstable to
disturbances of a wide range of Floquet parameters including three-dimensional
modes. However, the most unstable mode is a single complex eigenvalue with b =0
and d = 2.1. This would suggest the growth of a three-dimensional flow consisting of a
travelling wave imposed on the two-dimensional roll cells, in agreement with the exper-
imental results. From Alfredsson & Persson’s (1989) figure we estimate the observed
streamwise wavenumber to be about 2.4, which is thus in reasonable agreement with
the value, 2.1, derived from our stability analysis. The present study’s predicted wave
speed c = −σ I

1 /d =339 is also in agreement with Alfredsson & Persson’s (1989) study,
which stated that the wave speed observed in their flows was of the order of half the
undisturbed centreline velocity, which for this flow yields c = 314. A direct quantitative
comparison with the experimental study of Matsubara & Alfredsson (1998) is difficult.
This is because if we fix β =3.14 and Ω = 16.9 in order to agree with their parameter
values, then the secondary flow bifurcating from the basic flow reaches a turning
point at around R = 960, with the flux reaching (1/2)

∫
u0 + Ǔdz = 485, whereas the

experiments are conducted at a flux of 650. However, we note that it is the sinuous
form of tertiary flows shown in figure 13(a, b) that are consistent with the form of
twisting travelling-wave flows studied by Matsubara & Alfredsson (1998).

We also made a quantitative comparison with the study by Finlay (1990), who
used a three-dimensional DNS code to pick out the fastest growing eigenmodes after
adding a wavy disturbance of normal-mode form to streamwise-independent vortex
flows, which were also generated by a DNS code. The disturbances examined by
Finlay (1990) correspond to those of the present study with b = 0. In figures 17 and
18, we have compared results for two different values of the rotation number used
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Figure 17. A comparison with Finlay’s (1990) figures 2 and 3. (a) Growth rate and (b)
wave speed against d (with b = 0) for (i) Ω = 210, β = 5 and R = 222.3 (- · -); (ii) Ω =277.5,
β =5 and R = 299.4 (–); (iii) Ω = 345, β = 5 and R = 375.2 (- -); and (iv) Ω =450, β = 5 and
R = 491.6 (−·−). All our results were obtained for truncation level L =15, N =7. Finlay’s
(1990) corresponding results are given by (i) �, (ii) �, (iii) � and (iv) +.

by Finlay (1990); figures 17(a) and (b) correspond to the case considered in Finlay’s
(1990) figures 2 and 3 respectively, while figures 18(a) and (b) correspond to the case
considered in Finlay’s (1990) figures 7 and 8 respectively. It can be seen from figure 17
that agreement with the values obtained by Finlay’s (1990) alternative method are
good, although marginally less so for the case with Ω =450, R = 491.6, particularly
the wave speed for the smallest and largest data points in d . Agreement in figure 18 is
also good, although again for these results agreement at the highest value of R seems
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Figure 18. A comparison with Finlay’s (1990) figures 7 and 8. (a) Growth rate and (b) wave
speed against d (with b = 0) for (i) Ω = 8.00, β = 3 and R = 124.9 (- . -); (ii) Ω = 14.00, β = 3
and R = 260.8 (–); and (iii) Ω = 27.50, β =3 and R = 532.1 (- -). All our results were obtained
for truncation level L = 15, N = 7. Finlay’s (1990) corresponding results are given by (i) �, (ii)
� and (iii) �.

to be slightly reduced, with in particular discrepancies existing between the figures for
the growth rate at d = 0.7, and also the wave speed at d = 0.1. Regarding the latter, this
discrepancy is perhaps related to the change in the most unstable eigenmode that
occurs at around d = 0.14, with a subsequent discontinuity in the wave speed about
this point. Regarding the former discrepancy, we note, however, that despite the
difference in results, the growth rate for case (c) has two maxima in agreement
with Finlay’s (1990) results, and we have confirmed Finlay’s (1990) speculation that
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the first maxima corresponds to a different eigenmode (the most unstable mode for
0.14 � d � 0.42) to that of the second maxima. A visualization of an estimated form
of the tertiary flow arising from this different mode is provided in figure 13(b), and is
discussed in § 5.2.

We also performed a quantitative comparison with case II of the four cases for which
numerical simulation results are presented by Yang & Kim (1991). Yang & Kim’s
(1991) table 1 states that the spanwise wavenumber of this nonlinear flow is the same
as that found in the linear stage, which we understand to be the critical wavenumber
when their rotation number RotYK = 0.375, for which we obtain βc = 2.7115. Choosing
the other parameters Ω = 42 and R = 88.39 to agree with Yang & Kim’s (1991) other
dimensionless parameters for this case, we performed a secondary stability analysis
of the flow. However, in contrast to the stability observed in Yang & Kim’s (1991)
figure 14, we found this flow to be unstable to disturbances of Eckhaus or small
d type, similar to that shown (for different parameters) in figure 15. In fact, for
this wavenumber, fixing RotYK = 0.375, we found that the flow first loses stability at
RYK = 1.1RYK

c where RYK is Yang & Kim’s (1991) Reynolds number, and RYK
c denotes

the linear critical value of RYK for RotYK = 0.375. This is in contrast to the results
of Yang & Kim’s (1991) figure 14, which appear to show stability for RotYK = 0.375
and β = 2.7115 at RYK = 1.2RYK

c . However, we note that Yang & Kim (1991) stated
that they chose the values of their parameters to concur with those of Alfredsson &
Persson (1989). In this case their values of RYK and RotYK correspond to those of the
flow shown in figure 6(e) of Alfredsson & Persson’s (1989) study. We have estimated
the value of β from Alfredsson & Persson’s (1989) photograph, and the value of β

appears instead to be around 3.5, which is somewhat larger than the linear critical
value, an issue which was commented on by Alfredsson & Persson (1989) in relation
to their figure 6(d). With this observed value of β , together with R = 88.33 and Ω = 42
chosen so that the other parameter values agree with those used by Alfredsson &
Persson (1989) and Yang & Kim (1991) for this case, we performed another secondary
stability analysis and we found the flow to be stable to all disturbances, in agreement
with the behaviour observed in Alfredsson & Persson’s (1989) photograph, and in
agreement with the behaviour of the flow shown in Yang & Kim’s (1991) figure 14.
Such a stabilization gained by increasing the spanwise wavenumber may be attributed
to moving inside the Eckhaus-stable closed region as may be seen with reference to
figure 12.

7. Summary and conclusions
This study has considered the flow through a channel subject to system rotation

about the spanwise axis. A global bifurcation approach has been used to compute
finite-amplitude streamwise-independent nonlinear secondary flows. The stability of
these flows to three-dimensional secondary disturbances has been analysed, and
information about the bifurcating tertiary flow has been derived.

A rich structure of relationships between the secondary flows has been found to
exist, which may be explained by the loss of stability of all of the flows to other
elements of the solution set by a secondary Eckhaus disturbance mode, combined
with the loss of stability of lower-order primary and secondary disturbance modes.
The secondary flows exhibit a large area of near-zero absolute vorticity in the centre
of the channel with increasing R, as has also been observed in previous turbulent
experimental studies and numerical simulations.
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A stability analysis of the secondary flows to three-dimensional disturbances has
allowed us to confirm, clarify and add to the results of previous experimental and
DNS-based studies. Overall, results from the present bifurcation approach find good
qualitative and quantitative agreement with those of previous studies, with, in particu-
lar, excellent agreement with the experimental results of Alfredsson & Persson (1989).
As R is increased from the critical value the secondary flow first loses stability
to an Eckhaus disturbance (i.e. a streamwise-independent disturbance). With further
increases in R the flow loses stability to other secondary disturbance modes including a
mode with small but non-zero streamwise wavenumber, d , and fundamental spanwise
wavenumber (b = 0), which appears to correspond to the undulating wavy-vortex
type II (WVF2) flows in Finlay’s (1990) study. The strongest growing mode becomes
one with b = β/2 and d = O(1), and then a mode with b = 0 and d = O(1). The
eigenvalues of the latter modes have non-zero imaginary parts, and these modes
appear to correspond to the travelling-wave wavy vortex flow I (WVF1) of Finlay’s
(1990) study and also the twisting vortices observed in the experiments of Alfredsson
& Persson (1989).

At values of R for which a stable steady streamwise-independent secondary flow
solution still exists (i.e. values of R below the maximum value of R on the Eckhaus
stability curve as shown in figure 12) we would expect the secondary flow to adjust
its spanwise wavenumber to lie within the Eckhaus boundary. For small β this would
thus involve an adjustment to higher values of β , or smaller wavelengths, which would
be expected to be achieved by a splitting of some of the vortices. For large values of
β a downward adjustment in the value of this parameter would be expected to be
accompanied by a merging of some of the vortices. Although, as may be seen from
figure 11, the secondary flow loses stability to three-dimensional modes immediately
after losing stability to a two-dimensional (streamwise-independent) Eckhaus mode
with increasing R, the Reynolds number must increase further before the three-
dimensional modes become the strongest growing modes. Thus our results suggest
that there may be an interval in R in which the growth of streamwise-independent
disturbances dominates, while, however, no steady streamwise-independent secondary
flow is stable. In this situation, the scenario described by the numerical simulations
of Guo & Finlay (1991), in which there is a continual splitting and merging of the
streamwise-orientated vortices, may occur. For reference we have included a curve in
figure 12 showing where the secondary flow first loses stability to the subharmonic
three-dimensional travelling-wave mode discussed in § 5.2. If the corresponding
tertiary flow bifurcates supercritically the curve describes an existence curve for
the corresponding tertiary flow.

Approximate visualizations of the tertiary flow by superimposing the secondary
disturbance on the secondary flow suggest that these flows consist of a sequence of
staggered (superharmonic bifurcation) or aligned (subharmonic bifurcation) vortices
which lie either side of low-speed streamwise-orientated streaks in the streamwise
velocity component. For the cases we have considered there is one such streak
per spanwise wavelength of the flow for superharmonic bifurcations, and two such
streaks for flows arising from subhamonic bifurcations. The present structures may
be compared to breakdown and transitional structures observed in other non-rotating
flows. In the later stages, both oblique and Tollmien–Schlichting (TS) transition routes,
which may be studied in channel or boundary layer flows, lead to the formation of
�-shaped vortices, either in staggered (oblique, H-type TS) or aligned (K-type TS)
formation, as well as the streaky structures in streamwise velocity found in the present
case. The present results do not exhibit any �-shaped structures, but an analysis of the
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full nonlinear three-dimensional solutions for larger values of R is necessary to make
a definitive comparison. However, we note that structures consisting of staggered
vortices lying either side of low-speed streaks in streamwise velocity are a prevalent
feature of the near-wall region of turbulent flows, as described by Jeong et al. ( 1997).
Furthermore, upon introducing the wall unit length scale, ν/uT , where

uT =
√

ν|dU ∗/dz∗|wall,

it is found that the spanwise spacing of these low-speed streaks is consistently around
100 wall units, independent of the value of R. Waleffe (2003) recently computed
exact coherent state solutions for plane Poiseuille and Couette flows under various
combinations of slip/no-slip boundary conditions. In all cases, the solutions took
the form of staggered quasi-streamwise vortices lying either side of wavy low-speed
streaks, similar to the structures observed in the near-wall region of turbulent flows.
Waleffe (2003) optimized the parameters of his exact coherent states so as to derive
the lowest onset Reynolds numbers, and found the spanwise spacing of these states
to be close to 100 wall units. For reference, the present flows depicted in figures 13(a),
13(b) and 13(c) have a spanwise spacing of 62, 74 and 104 respectively (where half the
channel width corresponds to 25, 35 and 21 wall units respectively). Since these flows
are some distance from the turbulent regime, and their disturbance wavelengths have
not been optimized, a definitive comparison cannot be made, but the flows found in
the present study originating from superharmonic bifurcations in particular are of a
similar pattern to those found in near-wall regions of turbulent flow.

The authors would like to acknowledge the useful discussions held with M.
Mastubara on this material.
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